
The 2008 Iverson Computing Science Competition Page 1 of 24

The 2008 Iverson Computing Science Competition
May 27, 2008

V3.2

Name: __

School: __

City: __

Grade: _______

Are you taking AP or IB Computer Science (Yes/No): ______________

Have you completed Programming 5 (Yes/No/Taking it this term): ____________

Question Question Name Difficulty
Level

Mark

1 Find the Gold 1
2 Finite-State Machines 1
3 Number Properties 1
4 Playing the Slots 1
5 Language Grammars 2
6 The X-Machine 2
7 Poster Covering 2
8 Compressed Text 2
TOTAL

The 2008 Iverson Computing Science Competition Page 2 of 24

Overview:

This is a traditional 2 hour paper and pencil exam. It is divided into two sections: required, and
selected. All answers, including rough work, are to be written in this booklet.

Question 1 and 2 are required. You should attempt the two required questions. The required
questions do not require any particular programming language or advanced knowledge. They test
your ability to read and understand computation. Please ask for assistance if you do not understand
some aspect of the question, or the language.

Questions 3 to 8 are selected. You should attempt two of the selected questions. The selected
questions constitute the main part of the competition. Each question is marked with a difficulty level
of 1 or 2, where 1 is less difficult than 2. The level is based on the opinion of our question
reviewers, and may not be that accurate. All questions will be marked out of ten but the questions
will have different weights. A question of difficulty level 2 is worth 1.5 times a question of
difficulty level 1. We’ll be interested in getting your feedback about the questions after the
competition.

If you have the time, feel free to do more than two questions from this section. We feel that the two
required questions and two selected questions will use up most of your exam time but we are
interested in seeing what you can do. Don’t feel pressured, but if you do finish the two required
questions and two selected questions feel free to do more. All questions will be marked.

Programming Language:

The questions that require programming can be answered using any programming language you
wish (for example, VB, C/C++, Java, or Perl). If you wish you can even use pseudo-code.
However, if you do so, be sure to provide an adequate amount of detail so the markers can determine
if your solution is correct. Your pseudo-code should be detailed enough to allow for near direct
translation into an appropriate programming language.

Our primary interest is in your higher order thinking skills rather than on your code wizardry. So a
demonstration of logical thinking and systematic problem solving approaches will count for more
than a mastery of one particular language’s syntax. Be this as it may, you will still have to use some
type of coding language to demonstrate what you can do. However minor syntactical errors will be
ignored and we encourage you to put in comments where needed to clarify your code.

The 2008 Iverson Computing Science Competition Page 3 of 24

Suggestions:

1. Read the problem descriptions carefully. To get full marks all problem specifications have to be
met. You can assume that only valid input values will be entered by the user. You do not need to
include out-of-range or data type error checks in the input section of your programs.

2. Where feasible, sample executions of the desired program have been included for each problem.
Review them carefully to make sure you haven’t missed any specifications and to get hints as to how
to proceed. In these sample executions the sample data entered by the user are underlined.

3. We recommend that you think through your program prior to writing any code. Use pseudo-
code, diagrams, screen displays, tables or any other aid to help you plan your code. We will be
looking at your rough work. If that work is present you won’t have to rely completely on your coded
solution to get marks. Remember we are looking for the key computing ideas, not specific coding
details (which really are impossible to remember over a long term period). In particular you can
introduce your own “built-in” functions for sub tasks such as reading the next number, or the next
character in a string, or loading an array. Just make sure you specify the pre and post conditions of
your “built-in” sub-programs.

4. Take a look at all of the questions before deciding on the ones to attempt as you will not likely be
able to finish all of them.

5. Make sure to include English language comments to explain non-obvious or clever parts of your
solution.

The 2008 Iverson Computing Science Competition Page 4 of 24

Required Questions

Question 1 (Required) – Difficulty Level 1 – Find the Gold

Imagine a two-dimensional grid of square cells. There is a pot of gold that is guaranteed to be
located somewhere in the grid. The gold occupies exactly one cell in the grid. For instance, the gold
in the map below is located at position (4, 5).

You can check for the existence of gold in a grid cell using the function has_gold. The funtion
has_gold takes two positive integer coordinates, x and y, and returns a 1 if there is gold in that cell,
and 0 otherwise. In the above example, has_gold(4, 5) would return a value of 1, whereas
has_gold(2, 2) would return a value of 0. Although the values of x and y are greater than 0, they
have no set maximum (that is, no assumptions can be made about the size of the grid). You should
design and write your program as if the grid was infinite.

Your task is to complete the following program. The program should search the grid for the gold,
and when found should set the values of gx and gy to the coordinates of the gold. Since the gold is
guaranteed to be present, you can assume that one of the squares of the grid contains gold. This
means that even though the grid is of indeterminate size a properly written program will terminate.

Possible Hint: Approach the problem much the same way as a search and rescue team might look
for a lost hiker.

int main() {

int gx;

int gy;

/* your code would go here */

return 0;

}

The 2008 Iverson Computing Science Competition Page 5 of 24

Code for Question 1:

The 2008 Iverson Computing Science Competition Page 6 of 24

Question 2 (Required) - Difficulty Level 1 - Finite-State Machines

A finite-state machine (FSM) is another kind of computation device. Although you don’t usually
encounter them directly, finite-state machines exist inside almost any device that does something
interesting: kitchen appliances, remote control toys, simple phones (the complex ones have full
computers), and so on.

There are three primitive concepts associated with a FSM, each associated with part of a FSM
diagram:

State – a circle that indicates the current settings of the parts of the machine. Typically the state has
a label that tells you what it means.

Transition - a potential change from one state to another (possibly the same) state. The transition is
labeled with the events that cause the transition to occur. There is often a transition named
DEFAULT. This is the transition that is taken when the event that occurs does not match a specific
transition from the current state.

Event - something that causes a transition. For example, pushing a button, or reading a character
from the input, or the ticking of a clock are events.

A FSM does a computation by starting in a specific start state (marked with a *), and then waiting
for events to occur. Each event causes the machine to change state by following the transitions that
matches the event. The computation stops when there are no more events; or an event occurs that
does not have a matching transition and there is no DEFAULT transition from the current state.

A good physical intuition for these notions is: A state is a possible location that you can be at on a
map. When you are at one location a transition is a road that can take you to another location. An
event causes you to choose a particular road to travel. A computation is a road-trip, or path, between
a start location and an end location.

So when you trace a FSM computation, think of putting a marker (like a pebble) on the current state,
and when an event occurs, moving the marker to the next state along the transition that matches the
incoming event.

Example: Here is a FSM that processes two possible kinds of events: 0 and 1

This FSM starts in state Even (the * means start here). Every time a 1 event occurs the FSM makes a
transition to the other state. But every time a 0 event occurs the FSM makes a transition back to the

The 2008 Iverson Computing Science Competition Page 7 of 24

same state. Thus, the name of the current state tells you whether the number of 1's that have arrived
so far is odd (Odd) or even (Even).

Your Problem: A vending machine contains the following state machine to compute whether a
customer has put in the correct amount. Items in the vending machine cost 20 cents, and can be paid
for in any combination of 5 and 10 cent coins. You must put in exact change, and once you start
putting in coins you must continue until you reach a total of 20 cents, at which point the machine
enters the 20 state, and it will then allow you to make your choice of item. If you ever insert
something other than a 5 or 10 cent coin, like a 25 or 50 cent coin; or if you enter in too much money
(the machine cannot make change) then the machine enters the Error state. Note that the coin
events are named 5c, 10c, 25c, and 50c.

Note the extensive use of DEFAULT transitions. For example in state 0 inserting a 25 or 50 cent
coin will cause the DEFAULT transition to be taken to the Error state.

Customers have been complaining that under certain circumstances they have the correct change
but that the machine enters the error state when they are inserting their coins into the vending
machine.

Meanwhile, the price of items in the vending machine has increased to 25 cents.

You have been sent out to service the machine. You are to modify the machine so that the problem
the customers have been complaining about is fixed and that the price is increased to 25 cents. You
do this by altering existing transitions and adding new ones to the state machine below, and possibly
adding some new states.

Explain what the original error was in the state machine.

Write your modifications directly on the state machine diagram below.

The 2008 Iverson Computing Science Competition Page 8 of 24

Selected Questions

Question 3 (Selected) – Difficulty Level 1 – Number Properties

A divisor of a positive integer is another positive integer that evenly divides into the first. For
example, 3 and 4 are divisors of 12. The complete set of divisors of 24 is: 1, 2, 3, 4, 6, 8, 12, 24.
Note that y is a divisor of x if x % y is 0, where % is the mod function in most programming
languages.

A positive integer is called prime if its only divisors are itself and 1. By convention, 1 is not itself a
prime. Thus, the sequence of primes begins:
2, 3, 5, 7, 11, 13, 17...

A positive integer is called perfect if it is the sum of all of its divisors less than itself. For example,
28 is a perfect number because 28 is divisible by 1, 2, 4, 7, 14; and 28 = 1+2+4+7+14. Again by
convention, 1 is not regarded as a perfect number.

Your assignment is to write a program that will input one integer at a time, analyze it to determine if
it is prime or perfect, and then print out an assessment. If the number is:
 neither prime nor perfect, output "Dull".
 is prime, output "Prime".
 is perfect, output "Perfect".

You can assume that only integers are ever entered by the user. Entering a 0 or negative number
should cause the program to quit.

Note: In the sample run below, the values entered by the user are underlined.

Sample Run:

Enter an integer: 28
28 is perfect
Enter an integer: 17
17 is prime
Enter an integer: 140
140 is dull
Enter an integer: 1
1 is dull
Enter an integer: 7
7 is prime
Enter an integer: 0
Bye!

The 2008 Iverson Computing Science Competition Page 9 of 24

Code for Question 3:

The 2008 Iverson Computing Science Competition Page 10 of 24

Question 4 (Selected) – Difficulty Level 1 – Playing the Slots

Gerry, Jennie and Jessie Gullible (a set of fraternal triplets) have just been given a cheque from one
of their relatives for their 18th birthday. To celebrate, they decide to visit the local casino and parlay
this money into a bigger sum. They cash their cheque and clutching a small bag of loonies they
move to the slot machines to make their fortune.

They notice that one row 18 of the casino has a bank of three different slot machines. As there are
three of them and three machines and as the row number matches their age they take this as a good
omen and decide to play these three machines. They decide that each triplet will take a handful of
loonies from the bag and that they will play all three machines simultaneously either until they go
broke or triple their money. Each machine takes one loonie per play.

However, you have been observing the machines, and unbeknownst to the triplets, you know that the
machines follow a predictable pattern. The first machine pays always pays 8 loonies every 12th time
it is played; the second machine always pays 5 loonies every 8th time it is played; the third always
pays 7 loonies every 10th time it is played.

You decide to write a program that will predict how long the players will last before going broke.
Broke means that they no longer have enough money to play all of the machines in a round, that is,
having fewer than 3 loonies left to bet.

Your program should take as input the total number of loonies the players have to start with, plus
your observations of the number of times each machine has been played since it last paid out. Your
program should output the number of rounds of betting that occurs before the players go broke.
Each round consists of placing a 1 loonie bet on each machine.

Note: The values entered by the user are underlined. Assume that only valid input values will be
entered.

A sample run of the program…

How many loonies are you starting with? 25
How many times has the first machine been played since paying out? 3
How many times has the second machine been played since paying out? 5
How many times has the third machine been played since paying out? 4
The players play 20 rounds before going broke.

Another sample run of the program…

How many loonies are you starting with? 3
How many times has the first machine been played since paying out? 11
How many times has the second machine been played since paying out? 7
How many times has the third machine been played since paying out? 9
The players play 7 rounds before going broke.

The 2008 Iverson Computing Science Competition Page 11 of 24

Code for Question 4:

The 2008 Iverson Computing Science Competition Page 12 of 24

Question 5 (Selected) – Difficulty Level 2 – Language Grammars

Communication between people, between machines, and between people and machines is often done
by using a language. For example, people might use English, programs are written in Java, and
machines often talk between each other using XML.

A language is defined by a grammar which specifies how the sentences in the language are
constructed. Natural languages, like English, don't have a full grammar that specifies exactly what
you are allowed to say. But the artificial languages that we use with computers can have complete
descriptions. In this case, a grammar for the language defines all the grammatically correct
sentences that you can write. The grammar defines the form, or syntax of the language. It is
possible to have grammatically correct sentences that don't make sense, such as "My fish is a
bicycle". The study of the meaning of sentences is called semantics.

Since sentences are typically composed of words, a grammar can be though of as a way of
generating all the syntactically correct combinations of words that make up sentences. The grammar
itself is specified as rewrite rules that generate strings of words. The rewrite rules are very simple,
and are written in a form that means rewrite the symbol on the left hand side according to the right
hand side of the rule. For example, here is a grammar that describes how to construct simple
sentences. The rules have been numbered in order to explain the example, the numbering is not
necessary:

 Rule 1: Start => Sentence
 Rule 2: Sentence => Subject Verb Object
 Rule 3: Subject => 'Fred'
 Rule 4: Subject => 'Barney'
 Rule 5: Verb => 'eats'
 Rule 6: Verb => 'walks'
 Rule 7: Verb => 'says'
 Rule 8: Object => 'ribs'
 Rule 9: Object => 'I am hungry'
 Rule 10: Object => 'Dino'

The quotes indicate actual strings on which no rule substitution is allowed.

We generate various possible sentences using the following process:
1. Begin with the symbol Start.
2. Pick an unquoted symbol in the string we are generating, and find a rule that has that symbol on
the left hand side. Replace the symbol on the left hand side by the list of symbols on the right hand
side. Then keep repeating this process until all of the unquoted symbols have been processed or
until you come to a symbol for which no rule exists.

The resulting string of symbols is a grammatically correct sentence.

The 2008 Iverson Computing Science Competition Page 13 of 24

For example, here is the sequence of replacements beginning with Start that we get when we apply
the grammar rules in this order: 1, 2, 5, 3, and 10.

 Start
 Sentence
 Subject Verb Object
 Subject 'eats' Object
 'Fred' 'eats' Object
 'Fred' 'eats' 'Dino'

Note that each of the sentences generated by Rules 1 to 10 must consist of exactly three words. If
we add additional rules to the grammar, we can make more complex sentences.

 Rule 11: Sentence => Subject Verbphrase
 Rule 12: Verbphrase => Verb Object
 Rule 13: Verbphrase => Verbphrase 'and' Verbphrase

So now we can make longer sentences. Here is what happens when we apply rules:
1, 11, 3, 13, 12, 7, 9, 12, 5, 10

 Start
 Sentence
 Subject Verbphrase
 'Fred' Verbphrase
 'Fred' Verbphrase 'and' Verbphrase
 'Fred' Verb Object 'and' Verbphrase
 'Fred' 'Says' Object 'and' Verbphrase
 'Fred' 'Says' 'I am hungry' 'and' Verbphrase
 'Fred' 'Says' 'I am hungry' 'and' Verb Object
 'Fred' 'Says' 'I am hungry' 'and' 'eats' Object
 'Fred' 'Says' 'I am hungry' 'and' 'eats' 'Dino'

Your Problem:

Grammars are particularly good for things like arithmetic expressions. Here is one for expressions
involving addition and subtraction of the numbers 0, 1, 2:

 Rule 1: Start => Expr
 Rule 2: Expr => Number
 Rule 3: Number => '0'
 Rule 4: Number => '1'
 Rule 5: Number => '2'
 Rule 6: Expr => '-' Number
 Rule 7: Expr => '(' Expr ')' Oper '(' Expr ')'
 Rule 8: Oper => '+'
 Rule 9: Oper => '-'

The 2008 Iverson Computing Science Competition Page 14 of 24

Here is how we can derive the expression (1) + (- 2)

 Start Apply rule 1
 Expr Apply rule 7
 '(' Expr ')' Oper '(' Expr ')' Apply rule 8
 '(' Expr ')' '+' '(' Expr ')' Apply rule 2
 '(' Number ')' '+' '(' Expr ')' Apply rule 4
 '(' '1' ')' '+' '(' Expr ')' Apply rule 6
 '(' '1’ ')' '+' '(' '-' Number ')' Apply rule 5
 '(' '1’ ')' '+' '(' '-' '2' ')' done, no rules apply

Dropping all the quotes we get: (1) + (- 2)

Your Problem:

Part 1: Using the format in the preceding example to explain your steps, derive the expression:

(1) + (-2 + ((0) - (1)))

The 2008 Iverson Computing Science Competition Page 15 of 24

Part 2: Is it possible to put together a sequence of rules that generates the expression (- - 1) ?
Explain.

Part 3 Bonus Challenge: Since the expressions generated by the above grammar are proper
arithmetic formulas, each of them can be evaluated to an integer value. Some of these expressions
will have an even value (eg. -4, 0, 22) and others will have an odd value (-1, 1, 99). Develop a new
grammar that generates all of the even-valued expressions of the original grammar. For example,
these even-valued expressions would be generated by your new grammar:

 0
 (0) + (2)
 (0) + ((1) + (1))
 (1) + (1)
 ((2) + (1)) + ((1) + (2))

But these odd-valued expressions would not
 1
 (0) + (1)
 (1) + ((1) + (1))
 (2) + (1)
 ((2) + (2)) + ((1) + (2))

Hint: keep track of whether an expression is odd or even, and how odd and even combine with
addition and subtraction.

The 2008 Iverson Computing Science Competition Page 16 of 24

Grammar for Question 5 Part 3:

The 2008 Iverson Computing Science Competition Page 17 of 24

Question 6 (Selected) – Difficulty Level 2 - The X-Machine

Modern computers are very complex. But they were not always so. Early computers consisted of
memory, a processing unit that fetched instructions from memory, and limited input/output
capabilities.

The X-machine is an example of a simple, yet interesting computer. The basic machine consists of a
memory of M cells, with cells numbered 0, 1, 2, ..., M-1. The maximum that M can be is 10000.
Each cell can hold an integer in the range -10000 to +10000.

Since cells do not have names, we need to have a notation for talking about the contents of a cell:
The notation [x] means the contents of memory location x. Suppose cell 1 contains the number 10.
Then the contents of cell 1, that is [1], equals 10. The notation [[1]] means the contents of the
contents of cell 1, which is in this case the same as [10].

One of the memory locations has special significance. Location 0 contains the number of the cell
where the next instruction to be executed begins. That is, the first part of the instruction is stored in
cell number [0]. The value of that part of the instruction is called the opcode (operation code). Thus
the opcode of the next instruction to be executed is [[0]], which is the contents of the location given
by the contents of cell 0.

There is only one format of instruction for the X machine. Each instruction consists of 4 adjacent
memory cells. As we said above, the beginning of the next instruction to be executed is located in
cell [0]. The contents of this location and the next 3 define the instruction to be executed. In other
words, the next instruction to be executed consists of these 4 integers:

 [[0]] Opcode: 1001 (SUB), or 1002 (CMP)
 [[0]+1] X
 [[0]+2] Y
 [[0]+3] Z

There are only two possible instructions for this machine. Any opcode other than 1001 (SUB) or
1002 (CMP) causes the machine to halt.

SUB X Y Z means subtract the contents of cell Y from the contents of cell X and store the result in
cell Z. Then move to the next instruction, which is 4 cells after the first cell of this instruction.

Using the [] notation, the effect of this instruction is as follows:
 [Z] := [X] - [Y]
 [0] := [0] + 4

The notation [Z] := [0] means replace the left hand side by the right, or in this case, replace the
contents of cell Z by the contents of cell 0.

The 2008 Iverson Computing Science Competition Page 18 of 24

CMP X Y Z means compare the contents of cell X to the contents of cell Y, and if less, use location
Z as the next instruction to execute. Otherwise, continue with the next instruction.

Using the [] notation, the effect of this instruction is as follows:
 if [X] < [Y] then
 [0] := Z
 else
 [0] := [0] + 4

Note: the contents of cell [0] is being replaced by Z, not by the contents of cell Z.

Running a Program: The machine runs a program by first loading the memory with the values of
the program (don't worry about how this is done) and setting the contents of cell 0 to 1. Then it
fetches the instruction that begins in location [0], executes it, and keeps doing this fetch-execute
cycle until it encounters an invalid opcode and halts.

We can describe exactly how the X machine executes instructions with this pseudo-code program:

 [0] := 1
 running := true
 While running {

 # SUB X Y Z
 if [[0]] is 1001 then {

 [[[0]+3]] := [[[0]+1]] - [[[0]+2]]
 [0] := [0] + 4

 }

 # CMP X Y Z
 else if [[0]] is 1002 then {

 if [[[0]+1]] < [[[0]+2]] then {
 [0] := [[0] + 3]
 }
 else {
 [0] := [0] + 4
 }

 }

 # oops, bad opcode, so halt
 else {
 running = false
 }

 }

The 2008 Iverson Computing Science Competition Page 19 of 24

Example: To illustrate the X-machine, here is a simple X-machine program that puts the minimum
of cells 100 and 101 into cell 50. The CONST instructions are just a way of specifying the initial
contents of cells that do not contain instructions. The number to the left of each instruction is the
cell number that the instruction starts at:

 # program to put the minimum of [100] and [101] into [50]
 # clear cells 50, 51
1: SUB 50 50 50
5: SUB 51 51 51
9: CMP 100 101 21
 # [101] is smaller, copy negation into cell 50
13: SUB 50 101 50
 # skip the next instruction
17: CMP 98 99 25
 # [100] is smaller, copy negation into cell 50
21: SUB 50 100 50
 # change sign of cell 50
25: SUB 51 50 50
 # now stop

 98: CONST 0
 99: CONST 1
100: CONST 34
101: CONST -50

The program looks like this in memory just before running:

 0: 0
 1: 1001
 2: 50
 3: 50
 4: 50
 5: 1001
 6: 51
 7: 51
 8: 51
 9: 1002
10: 100
11: 101
12: 21
13: 1001
14: 50
15: 101
16: 50

17: 1002
18: 98
19: 99
20: 25
21: 1001
22: 50
23: 100
24: 50
25: 1001
26: 51
27: 50
28: 50
…
 98: 0
 99: 1
100: 34
101: -50

And when it runs is does this:

The 2008 Iverson Computing Science Competition Page 20 of 24

Exec 1: SUB 50 50 50
Subtracting [50]=0 - [50]=0
Writing [50]=0
Exec 5: SUB 51 51 51
Subtracting [51]=0 - [51]=0
Writing [51]=0
Exec 9: CMP 100 101 21
Comparing cell [100]=34 with [101]=-50

Exec 13: SUB 50 101 50
Subtracting [50]=0 - [101]=-50
Writing [50]=50
Exec 17: CMP 98 99 25
Comparing cell [98]=0 with [99]=1
Exec 25: SUB 51 50 50
Subtracting [51]=0 - [50]=50
Writing [50]=-50
Halt at 29

Your Problem:
Write an X-machine program to sum up the integers 1 ... n, where n is initially stored in cell 33, and
the sum is finally stored in cell 34. Write your program using the CMP, SUB, and CONST
commands and put it in the table below. If the first column put the cell number where the instruction
starts, and the instruction in the second column.

Cell #
0 Reserved for cell number of next instruction
1
5
9
13
17
21
25
29
33
37

The 2008 Iverson Computing Science Competition Page 21 of 24

Question 7 (Selected) – Difficulty Level 2 – Poster Covering

Imagine a dorm room occupied by a number of computer science students. Each student has a set of
posters that they would like to place on the wall, however, poster placement is done hastily, and
some of the posters overlap each other. The following figure shows an example.

Your task will be to write a program that computes the total area of the wall being covered by the
posters. You may assume the following:

1. The size of the wall is 500 cm wide by 250 cm high.
2. The size of the posters will always be measured in cm, and the dimensions will always be

whole numbers (i.e. the size of a poster might be 60cm x 80cm, but never 40.5cm x 84.4 cm).
3. The corners of the poster will always be whole numbers. That is, the bottom left corner of a

poster might be at location (60cm, 80cm), measured from the bottom left corner of the wall,
but never at (40.5cm, 84.4cm).

4. The number of posters will be given by the integer n. Each poster will be indexed from 1 to
n.

5. There are four available functions:
a. x(index) takes the number of a poster, and returns the x-coordinate of its bottom left corner

(relative to the left edge of the wall). For instance, calling x(2) will return the x-coordinate
of the bottom left corner of the second poster.

b. y(index) takes the number of a poster, and returns the y-coordinate of its bottom left corner
(relative to the bottom edge of the wall).

c. height(index) takes the number of a poster, and returns its height.
d. width(index) takes the number of a poster, and returns its width.

The 2008 Iverson Computing Science Competition Page 22 of 24

Code for Question 7:

The 2008 Iverson Computing Science Competition Page 23 of 24

Question 8 (Selected) – Difficulty Level 2 – Searching Compressed Text

Data compression is the task of representing a sequence of data with fewer bits than its original
representation. One way to do this is with run-length encoding. In run-length encoding, consecutive
sequences of the same character are stored as a single version of that character, along with that
character's count. For instance, the text:

AAAABBCCCDEEEEEEEEEE

could be stored as:

4A2B3C1D10E

which requires only 11 characters instead of 20.

Your task is to write a program that reads in two character strings. The first string will be some text
that has been compressed using run-length encoding. The second string will be a pattern in that text
to find (which is not encoded). If the pattern is found, the program should print out "Pattern
found!". If the pattern cannot be found, the program should print "Pattern not found!".

For simplicity, you may assume that the counts and the characters are separated by spaces. You may
also assume that the number of character-count pairs in the text is less than or equal to 100, and that
the size of the pattern is less than 50 characters.

Here are some examples of the program in action:

Enter text: 4 A 2 B 3 C 1 D 10 E
Enter a pattern: AA
Pattern found!

Enter text: 4 A 2 B 3 C 1 D 10 E
Enter a pattern: BBCCC
Pattern found!

Enter text: 4 A 2 B 3 C 1 D 10 E
Enter a pattern: ABBC
Pattern found!

Enter text: 4 A 2 B 3 C 1 D 10 E
Enter a pattern: ABBBC
Pattern not found!

The 2008 Iverson Computing Science Competition Page 24 of 24

Code for Question 8:

